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Conservation laws such as the Poynting theorem of electrodynamics that are based

on the divergence of a second-rank four-tensor, are fundamentally different from con-

servation laws such as the conservation of electric charge that are based on the diver-

gence of a four-vector. This article investigates the consequences of this difference for

understanding the relation between electromagnetic field momentum and the flow of

electromagnetic field energy.

Momentum and energy conservation require electromagnetic field momentum and

energy to be treated as physically real, even in static fields. This motivates the conjecture

that field momentum might be due to the flow of a relativistic mass density (defined as

energy density divided by the square of the speed of light).

This article investigates the velocity of such an energy flow and finds a conflict

between two different definitions of it, both of which originally seem plausible if the

flow is to be taken as real. This investigation is careful to respect the transformation

rules of special relativity throughout.

The paper demonstrates that the consensus definition of the flow velocity of elec-

tromagnetic energy is inconsistent with the transformation rules of special relativity, and

hence is incorrect. A correct flow velocity is then derived which is completely consis-

tent with those transformation rules.

The conclusion is that these conflicting definitions of energy flow velocity cannot

be resolved in a way that is consistent with special relativity and that also allows elec-

tromagnetic field momentum density to be the result of relativistic mass flow. Though

real, field momentum density cannot be explained as the flow of field energy.

As a byproduct of the study, it is also shown that there is a comoving system in

which the electromagnetic energy-momentum tensor is reduced to a simple diagonal

form, with two of its diagonal elements equal to the energy density and the other two

diagonal elements equal to plus and minus a single parameter derived from the elec-

tromagnetic field values, a result that places constraints on possible fluid models of

electromagnetism.

*This is a revised version of an article published in Studies in the History and Philosophy of Science (2021) 88: 358-366.
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1 Introduction

The Poynting theorem of electrodynamics is based on the di-

vergence of the second-rank energy-momentum tensor Tαβ.

Conservation laws based on the divergence of a second-rank

tensor are fundamentally different from conservation laws,

such as the conservation of electric charge, that are based

on the divergence of a four-vector. This article investigates

the consequences of this difference for understanding the re-

lation between electromagnetic field momentum and the flow

of electromagnetic field energy.

The example of a rotating disk with a magnet at its center

and charged spheres on its perimeter provides a convincing

argument that, to preserve the principle of angular momen-

tum conservation, the field momentum of even a static elec-

tromagnetic field must be considered physically real.1 It is

also generally assumed that conservation of energy requires

the energy density of the electromagnetic field to be physi-

cally real, even for static fields. This article accepts the reality

of the field momentum and energy, but questions the flow of

field energy as the source of field momentum.

Explanation of electromagnetic field momentum as an en-

ergy flow depends crucially on a correct definition for the

velocity of that energy flow. Since special relativity is the

invariance theory of electromagnetism, throughout this paper

by correct or valid we will mean that a definition or construct

is correct or valid only if it is consistent with special relativity.

We give two possible definitions for the velocity of elec-

tromagnetic energy flow, which we refer to as Definitions A

and B. For conservation laws such as charge conservation that

are derived from the divergence of a four-vector, these two

definitions coincide. But for conservation laws such as the

Poynting theorem based on the divergence of the second-rank

energy-momentum tensor, the two definitions differ and only

one can be correct.

Definition A: In the modern, post-relativity era it has been

the consensus in the literature, at least since the first English

edition of Born and Wolf’s Optics,2 that the electromagnetic

energy flow velocity is VA = S/E where S is the Poynting

vector and E is the energy density. We refer to this as Defini-

tion A.

With Definition A, clearing the fraction to S = EVA and

dividing by c2 gives G = MrelVAwhere G = S/c2 is the mo-

1Feynman et al [6], Section 17-4, Section 27-6, and Figure 17-5. Quan-

titative matches of field to mechanical angular momentum are found, for

example, in Romer [16] and Boos [2].
2 In a discussion of the Poynting theorem in material media, but with

no special attention to Lorentz covariance, Born and Wolf [3] Section 14.2,

eq.(8) identify VA as the velocity of energy transport or ray velocity. (The first

edition of Born and Wolf’s text appeared in 1959.) Section B.2 of Smith [19]

echos Born and Wolf but provides no new derivation. Geppert [7] makes the

same identification. More recently, Sebens [17, 18] relies on these and other

sources to identify VA as the electromagnetic mass flow velocity. Sebens

also considers earlier, pre-Einstein studies by Poincare. The present paper

however is focussed on the reconsideration of the subject forced by special

relativity.

mentum density, andMrel = E/c
2 is the so-called relativistic

mass density. Thus Definition A implies that the momentum

density is due to flow of relativistic mass.

This article investigates this consensus claim and finds

reason to doubt it. Sections 2 and 3 demonstrate that the co-

ordinate flow velocity VA is not correct in the above sense.

It is not consistent with the transformation rules of special

relativity.

Definition B: The velocity of the energy (mass) flow at

a given event can also be defined as the velocity of an ob-

server who measures the Poynting energy flux vector to be

zero at that event. If S truly is the flux of energy flow, then

an observer comoving with this flow should observe a zero

value of that energy flux. This is Definition B and its velocity

will be denoted as VB. An explicit and relativistically correct

derivation of VB is presented in Section 4. Its possible caveats

are discussed in Section 5 and Section 6.

Section 7 demonstrates that the comoving reference sys-

tem used in the derivation of Definition B allows a reduction

of the electromagnetic energy-momentum tensor to a simple,

diagonal form, with two of its diagonal elements equal to the

energy density in the comoving frame and the other two di-

agonal elements equal to plus and minus a single parameter

derived from the electromagnetic field values. This reduction

of the electromagnetic energy-momentum tensor is shown to

place important constraints on fluid-dynamic models of en-

ergy flow in the electromagnetic field.

Section 8 concludes that electromagnetic field momentum

density is not due to the flow of an electromagnetic mass den-

sity. Since VA , VB, a choice between Definitions A and B

must be made. As noted above, velocity VA would show elec-

tromagnetic field momentum to result from the flow of field

energy. However VA is not relativistically correct and must be

rejected. However, with the correct and relativistically valid

choice VB, momentum density cannot be explained as due to

the motion of a relativistic mass densityMrel = E/c
2. Thus

the title question of this paper has a negative answer.

Section 9 accepts the negative results of the present study

of relativistic mass flow, and speculates about possible ways

forward in the search for a model, if any, of physics that might

underly the Maxwell Equations.

This paper uses Heaviside-Lorentz units. We denote four-

vectors as K = K0e0 +K where e0 is the time unit vector and

the three-vector part is understood to be K = K1e1 + K2e2 +

K3e3. In the Einstein summation convention, Greek indices

range from 0 to 3, Roman indices from 1 to 3. The Minkowski

metric tensor is (ηαβ) = (ηαβ) = diag(−1,+1,+1,+1). Three-

vectors are written with bold type K, and their magnitudes as

K. Thus |K| = K.
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2 Arguments for Definition A

Definition A for the energy flow velocity is defined by equiv-

alent3 formulas

S = EVA and VA = S/E (1)

Writing S=c (E × B) and E=
(

E2 + B2
)

/2, in terms of the

electric and magnetic fields E and B, gives4

VA =
S

E
=

2c (E × B)
(

E2 + B2
) (2)

It is easily shown from the inequalities (E − B)2 ≥ 0 and

EB ≥ |E × B| that |VA| ≤ c.

Argument from Analogy: The consensus definition that

energy flow velocity is simply VA = S/E is suggested by anal-

ogy with the well understood example of Vq = J/ρ as the

velocity of charge flow, given electric charge density ρ and

charge flux density J. It will therefore be useful to begin with

a review of the properties of charge flow.

The charge flux four-vector is J = cρe0 + J. This four-

vector can be timelike, spacelike, or null; but there are useful

cases in which it is timelike. In these cases, the velocity VqA =

J/ρ has magnitude less than the speed of light.

As noted in Section 1, there are actually two possible def-

initions of the velocity of charge flow. One is the VqA = J/ρ

just defined. The other is the velocity VqB of a comoving ref-

erence system (which we will refer to as the primed system)

in which the charge flux vector vanishes, J′ = 0. Since an

observer at rest in the prime system sees a zero charge flux,

this observer must be moving with the charge flow, and his

velocity VqB must be the velocity of that flow.

Since J = cρe0 + J is known to be a four-vector, Ap-

pendix II shows that a Lorentz boost transformation5 with the

boost velocity V = VqA = J/ρ actually also transforms from

the original unprimed reference system to a reference system

in which J′ = 0. Thus, for the case of charge flow, the two

possible flow velocity definitions coincide, VqB = VqA.

But the argument in Appendix II depends essentially on

the four-vector transformation rules of J. It is crucial that

J = cρe0 + J is a legitimate four-vector whose components

transform according to the standard rule J′α = Λα
β

Jβ.

If we try to apply the reasoning of Appendix II with ρ, J

replaced by E, S, the chain of logic does not go through to its

conclusion. Unlike ρ and J, the energy density E and energy-

flux vector S of the Poynting theorem do not transform as

components of a four-vector. The transformation rule for cE

and (S)i is as the (00) and (0i) components of the more com-

plicated expression given in eq.(6) below, which will also in-

volve contributions from cMi j terms. Instead of J′α = Λα
β

Jβ

3Since E is nonzero except when E=B=0, throughout this paper we will

take Definition A, VA = S/E, to be equivalent to the formula S = EVA.
4Electromagnetic formulas in this paper are taken from Griffiths [8] and

Jackson [9], with translation into Heaviside-Lorentz units.
5The Lorentz boost formalism is summarized in Appendices I and I.1.

we have S ′α , Λα
β

S β. The argument in Appendix II thus

fails when ρ, J are replaced by E, S. The boost velocity VB

that would make S′ = 0 does not coincide with VA.

The analogy between charge flow and energy flow is there-

fore broken, and cannot be used as an argument for the con-

sensus velocity definition VA = S/E.

In the case of the Poynting theorem, VB , VA and both

cannot be correct. A choice must be made between them.

It will be shown in Section 3 that energy flow velocity VA is

inconsistent with the transformation rules of special relativity

and must be rejected. A correct and relativistically legitimate

velocity VB is derived in Section 4.

Argument from Geometry: In addition to the above anal-

ogy with charge density, the following simple geometric con-

struction can be used to argue for the consensus definition

VA = S/E.

Geometry of a Flow: Given a flowing substance with den-

sity κ and flux density vector K, define a velocity as v = K/κ.

Now we must examine this velocity definition v to see

whether it passes the test of compatibility with the rules of

special relativity. If it does not, then application of the results

of this inset will be a misapplication, and would lead to re-

sults inconsistent with the special theory of relativity. The test

must be applied on a case-by-case basis. Some applications

will be seen to be correct, but others will be misapplications.

Assuming that v passes that test, the following simple ge-

ometric argument may be made. Consider an arbitrarily ori-

ented area element da and a time increment dt. The product

dτ = (v dt) · da is a volume element. All points in dτ moving

with velocity v will flow through da in time dt. Now multiply

by κ to obtain κdτ = κv ·da dt, the amount of substance in dτ.

If we assume that all of the substance in dτ is moving with

the same velocity v, then v · da dt is the amount of substance

flowing through da in time dt. But this amount is also, by

definition of the flux density K, given by K · da dt. Thus

K · da dt = κv · da dt (3)

Since da and dt are arbitrary, it follows that K = κv.

But the above assumption that all elements of the sub-

stance are moving with the same velocity v is often unjusti-

fied. (Think of a flow of electrical charges with some thermal

velocity.) Then the above simple geometric argument fails.

But if the argument in eq.(3) fails (while still assuming

that v passes the relativity test above) we can consider v =

K/κ to be a definition of an average flow velocity. Then K =

κv is true by definition.

If this geometrical argument with κ = E, K = S passed the

test of compatibility with relativity, it would predict that the

energy flow velocity must be v = S/E = VA, the consensus

definition of energy flow velocity defined in eq.(2), either as

a geometric construction or as a definition. However, it will

be shown in the next section that v = S/E = VA does not pass

the test of compatibility with relativity.
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3 Caveats of Definition A

The principal difficulty with Definition A for the energy flow

velocity is that it is inconsistent with the transformation rules

of special relativity.

We take a flow velocity definition to be relativistically

valid only if that definition passes a simple test using the Ein-

stein velocity addition formula. Since that test is derived di-

rectly from the transformation rules of special relativity, any

flow velocity definition that fails the test must also violate

some rule of special relativity. Definition A fails this simple

test and hence is not relativistically valid.

Einstein Addition Test: Consider two different but paral-

lel initial reference systems referred to as the unprimed and

asterisk systems. Let the asterisk system be obtained from the

unprimed one by a boost transformation with boost velocity

V = Ve1 of arbitrary magnitude V. Then unit vectors ei are

parallel to the corresponding e
∗
i
, for i = 1, 2, 3. Let the veloc-

ity of a comoving observer moving with the energy flow be v

relative to the unprimed system, and the velocity of that same

observer relative to the asterisk system be v∗. With no loss of

generality, the unprimed system can be oriented so that v is

in the e1 direction. Then v = ve1 and hence v∗ = v∗e∗
1
.

Electrodynamics in vacuum except for a possible explicit

source can be expressed in manifestly covariant form and

therefore must be true regardless of the choice of initial ref-

erence system; there can be no privileged initial reference

system. So any relativistically correct derivation that defines

flow velocity v when applied in the unprimed system can also

be applied to define flow velocity definition v∗ when applied

in the asterisk system. And these two velocities are veloci-

ties of the same comoving observer. Thus, when we make a

boost transformation with boost velocity V = Ve1 between

the unprimed and asterisk systems, these velocities v and v∗

must transform by the Einstein velocity-addition formula (See

Example 12.6 of Griffiths[8])

(v/c) =
(V/c) + (v∗/c)

1 +
(

V v∗/c2
) (4)

This is the Einstein Addition Test that any relativistically valid

flow velocity definition must pass.

Note that this test is a necessary condition for consis-

tency with the transformation rules of special relativity. Any

electromagnetic energy flow definition that fails to pass the

Einstein Addition Test in eq.(4) must necessarily violate the

transformation rules of special relativity from which eq.(4) is

directly derived, and therefore must be rejected.

We now show that the consensus energy-flow velocity

definition VA = S/E fails the Einstein Addition Test. This

failure is due to the fact that cE and S are not components

of a four-vector. Unlike the legitimate four-vector of charge

flow J = cρe0 + J, there is no four-vector S ≍ cEe0 + S. (I

use the symbol ≍ to remind the reader that, though written

formally as a four-vector here, it does not actually transform

as one.)6 Noting that S = c2G where G is the linear mo-

mentum density of the electromagnetic field, the cE and (S)i

actually transform as the (00) and (0i) components of a four-

tensor cTαβ defined as c times the standard electromagnetic

energy-momentum tensor

(

Tαβ
)

=





























E c G1 c G2 c G3

c G1 M11 M12 M13

c G2 M21 M22 M23

c G3 M31 M32 M33





























(5)

where Mi j = −
(

EiE j + BiB j

)

+
1

2
δi j

(

E2 + B2
)

. Thus the

transformation rule for cE and (S)i is as the (00) and (0i) com-

ponents of the more complicated expression

cT ′
αβ
= ΛαµΛ

β
νcT µν (6)

which will also involve contributions from the cMi j terms.

To see that energy-flow velocity definition VA = S/E

fails the Einstein Addition Test, begin with the example of

the charge flow definition VqA = J/ρ that passes the test.

Appendix III demonstrates that the coordinate velocities

VqA = J/ρ and V∗
qA
= J∗/ρ∗ derived from the charge density

four-vector J do pass the Einstein Addition Test, as must be

true for any well-defined coordinate velocity. When the in-

verse four-vector transformation rule Jα = Λαβ J∗β is used to

write J0 and Ji in terms of V and the asterisk system quan-

tities J∗0 and J∗i, the result is the last expression in eq.(38),

which agrees with the Einstein velocity addition rule eq.(4)

and hence with special relativity.

However, if we now attempt to apply this same argument

to the case of VA = S/E and V∗
A
= S∗/E∗, the argument of

Appendix III fails. In this case, the equality Jα = Λαβ J∗β is

replaced by the inequality S α
, Λαβ S ∗β resulting from the

failure of S to be a four-vector. Thus, eqs.(37, 38) are not

true when J is replaced by S, and the argument does not go

through to its conclusion.

In place of the equality in eq.(38) for the charge density

case, in the case of VA we have the inequality

(VA/c) = (S/Ec) ,
(V/c) +

(

V∗
A
/c

)

1 +
(

V V∗
A
/c2

) (7)

where the expression on the extreme right in eq.(7) would be

the correct Einstein velocity addition result. Thus VA fails the

Einstein Addition Test.

6A related point is made by Rohrlich [15], using the so-called von Laue’s

theorem to argue that integrals of cE and S over hyperplanes may in some

cases transform as four-vectors. But we are treating these quantities locally,

at a particular event. Von Laue’s theorem does not imply that the local field

functions cE and S (the integrands of these hyperplane integrals) themselves

transform as components of a four-vector. They do not. See also Chapter 6

of Rohrlich [14].

4



The inequality in eq.(7) can also be derived directly from

the transformation rules for the E and B fields, without mak-

ing any reference to the charge flow analogy. Using the same

geometry as in the Einstein Addition Test above, and a trans-

formation rule similar to eq.(10), it can be shown that

(VA/c) =
(V/c) +

(

1 + V2/c2
) (

V∗
A
/c

)

(

1 + V2/c2
)

+ 2
(

V V∗
A
/c2

) ,

(V/c) +
(

V∗
A
/c

)

1 +
(

V V∗
A
/c2

) (8)

which corroborates the inequality in eq.(7) and shows again

that VA = S/E fails the Einstein Addition Test.

The results of the present Section can be stated as the fol-

lowing proposition:

Proposition 1: The consensus definition of energy flow

velocity

S = EVA and VA = S/E (9)

defines a velocity VA that fails the Einstein Addition Test and

therefore cannot be used as a relativistically valid definition

for the electromagnetic energy flow velocity.

In spite of its relativistic incorrectness, the definition in

eq.(9) might seem to be proved by the geometrical argument

in Geometry of a Flow from Section 2. However, note that

the success of that geometric argument depends essentially

on the assumption that all elements of the flowing substance

are moving with the same velocity. But the Poynting theorem

gives us E and S as densities and not as precise values. There

is no reason to suppose that E and S are densities of a set of

elements all moving at exactly the same velocity. In fact, the

relativistic incorrectness of eq.(9) argues that they are not.

In summary, regardless of how it is derived, either from a

flawed analogy with charge flow, or from a misapplication of

Geometry of a Flow, the definition VA = S/E of energy flow

velocity violates the transformation rules of special relativity

and is not relativistically valid. It follows that VA cannot be

the velocity of electromagnetic energy flow in a relativisti-

cally correct theory.

4 Detail of Definition B

Definition B of the energy flow velocity, denoted VB, is the

velocity of a comoving observer who measures a zero en-

ergy flux. Expressed in the precise language of Lorentz boost

transformations:

The coordinate velocity of the flow of electromagnetic field

energy at a given event is the velocity VB of a Lorentz boost

that transforms the original reference system into a reference

system in which the Poynting energy flux vector is zero at that

event.

An observer at that event and at rest in this transformed

system, which we call the comoving system and denote by

primes, therefore measures a zero energy flux. The zero flux

measurement indicates that this observer is comoving with

the flow of energy. Such an observer has coordinate velocity

VB relative to the original system,7 and therefore VB is the

coordinate velocity of the energy flow at the given event.

The problem is to find this boost velocity VB. An analo-

gous problem arises in the generic theory of relativistic fluid

flow.8 There a velocity can be defined as Va = pc2/e anal-

ogous to our VA = S/E = Gc2/E. But, a proof analogous

to the proof in Section 3 shows that velocity to be inconsis-

tent with the Einstein velocity relation of special relativity

and hence not a valid definition. In the theory of fluid flow,

there is no other way to derive a flow velocity from first prin-

ciples. One solution is simply to assert that there must be a

primed reference system moving with the flow even though

we have been unable to derive it; to assert that the energy-

momentum tensor in that system must have the isotropic form
(

X′αβ
)

= diag{ε′, π′, π′, π′}, where ε′ is an energy density and

π′is a pressure. This is called the perfect fluid model. How-

ever it remains true that the flow velocity and the form of the

energy-momentum tensor are simply asserted rather than de-

rived.9

In the electromagnetic case considered in the present pa-

per, however, the failure of VA does not exhaust our ways

of deriving VB. We can fall back on the rich structure of

the Maxwell equations themselves, which underlie the defi-

nition of the energy-momentum tensor Tαβ and from which it

was derived. Thus in the electromagnetic case we are not re-

duced to merely asserting the existence of a comoving frame.

We can actually derive the boost velocity VB and the form of

the energy-momentum tensor in the comoving frame, starting

from first principles.

The rules for transformation of electric and magnetic fields

by a boost with velocity VB can be written in a special rela-

tivistically correct but not manifestly covariant form10

E′ ⊜ γB

(

E +
VB

c
× B

)

+ (1 − γB)
VB (VB · E)

V2
B

B′ ⊜ γB

(

B −
VB

c
× E

)

+ (1 − γB)
VB (VB · B)

V2
B

(10)

7See Appendix I.2 for a demonstration that any point at rest in the primed

system moves with coordinate velocity VB.
8Part I, Chapter 2 of Weinberg[20] presents what I will refer to as a

generic theory. It assumes only that a fluid is composed of a countable set

of small particles characterized by their mass mn, position xn, and velocity

vn. Weinberg (e.g. his eq.(2.8.1) et seq) uses the language of Dirac delta

function densities, but his formulas are easily translated into more standard

density functions.
9Weinberg[20] Part I, Chapter 2, Section 10, eq.(2.10.1) et seq. Note that

Weinberg introduces the perfect fluid by saying, "A useful approximation is

..." rather than attempting to derive it from his previous work in his Chapter

2.
10See Section 11.10 of Jackson [9], eq.(11.149). The ⊜ symbol means that

the components of the three-vector on the left side of this symbol, expressed

in the primed coordinate system, are numerically equal to the corresponding

components of the three-vector on the right side of this symbol, expressed in

the original unprimed system. If a′ ⊜ c and b′ ⊜ d, it is easily proved that:

(a) (a′ × b′) ⊜ (c × d) and (b) (a′ · b′)=(c · d). (c) Also if w′ ⊜ w then the

magnitudes are equal, w′ = |w′| = |w| = w.

5



where the Lorentz factor is γB =
(

1 − V2
B
/c2

)−1/2
.

The boost velocity VB can then be found by writing

VB = λVA (11)

where λ is a rotationally scalar quantity to be determined. The

velocity VB will have the same direction as VA but not the

same magnitude.

Since VA and hence VB are perpendicular to both the elec-

tric and magnetic fields, it follows that (VB · E) = (VB · B) =

0. Thus, eq.(10) reduces to11

E′ ⊜ γB

(

E +
VB

c
× B

)

B′ ⊜ γB

(

B −
VB

c
× E

)

(12)

Insert eq.(12) into the equation for the Poynting vector in the

comoving system, S′ = cE′ × B′. Using property (a) of the

symbol ⊜ from footnote 10 together with eq.(11) and then

eq.(2), Appendix IV demonstrates that

S′ = cE′ × B′ ⊜ γ2
Bc (E × B)

(

(VA/c) 2 λ2 − 2λ + 1
)

(13)

Choose λ to solve the quadratic equation

(

(VA/c) 2λ2 − 2λ + 1
)

= 0 (14)

Then eq.(13) makes S′ = 0, as required by Definition B. The

solution is

λ =
1

(VA/c) 2

{

1 −
√

1 − (VA/c) 2
}

(15)

From eq.(11), the Definition B for the velocity of the energy

flow is therefore

VB = λVA =
1

(VA/c) 2

{

1 −
√

1 − (VA/c) 2
}

VA (16)

where VA is defined in eq.(2).

This VB is the relativistically correct boost velocity from

the original unprimed frame to the comoving reference frame

in which S′ = 0.12

Since VB is parallel to the energy flux vector S, the energy

flow velocity can also be written as VB = VB (S/S ) where the

magnitude VB is given by13

(VB/c) =
1

(VA/c)

{

1 −
√

1 − (VA/c) 2
}

(17)

11Note that V′
B
⊜VB as defined in Appendix I.1, together with eq.(12) and

property (b) of the symbol ⊜ in footnote 10, imply that (V′
B
· E′)=VB ·

γ [E + (VB/c) × B]=γ(VB · E)=0. Similarly, (V′
B
· B′)=0.

12Appendix V gives details of the comoving system for possible values of

(E · B) at a given event.
13The text just after eq.(2) proves that 0 ≤ VA ≤ c. As (VA/c) increases

from 0 to 1, eq.(17) shows that (VB/c) increases monotonically from 0 to 1,

with VB ≤ VA at every point. It follows that 0 ≤ VB ≤ c also. Regions of the

unprimed system where E is nonzero but S is zero have VA = 0 and VB = 0,

and have no energy flow.

Eq.(17) can be inverted to give

(VA/c) =
2 (VB/c)

1 + (VB/c)2
(18)

which can be used to write the factor λ in eq.(15) as a function

of the velocity Definition B

λ =
1 + (VB/c)2

2
(19)

which shows λ ≤ 1 and hence VB ≤ VA.

Summary: This section uses the co-variant field transfor-

mation equations in eq.(10) to derive a boost velocity, VB,

defined in eq.(16), that transforms from the unprimed system

to a comoving primed system in which the energy flux vector

S′ = 0. Then Appendix I.2 shows that VB is also the coordi-

nate velocity relative to the unprimed system of an observer

at rest in the comoving primed system. Since it is derived di-

rectly from the rules of special relativity, this velocity is well

defined and relativistically correct. Also, it can be shown that

this VB passes the Einstein Addition Test, as it must.

The observer at rest in the primed comoving system will

observe the energy flux vector S′ to be zero. Thus if he holds

an oriented area element da′ in any orientation he will find

that the energy flux through that element to be S′ · da′ = 0.

Hence the observer must be moving at the same velocity as

the flow of energy, and its velocity will be the same as his

velocity, VB.

The conclusion is that the well defined and relativistically

correct coordinate velocity VB must be the correct velocity of

the electromagnetic energy flow.

This conclusion, together with VB , VA from eq.(16),

also gives independent conformation of the results of Sec-

tion 3, that the correct definition of electromagnetic energy

flow velocity is not the consensus value VA. It is important

to note that this conclusion, along with all the results in Sec-

tion 4, depend only on the assumption of the standard trans-

formation laws of electromagnetic field in eq.(10), and not on

any other assumptions.

Thus Section 4 provides convincing proof that VB is the

relativistically correct electromagnetic energy flow velocity

definition, and that the consensus value VA is not.

5 Caveats of Definition B

The caveats for Definition A are technical; they concern its

violation of the transformation rules of special relativity. By

contrast, the derivation of VB in Section 4 is completely con-

sistent with special relativity throughout. Velocity VB is the

relativistically correct velocity of an observer at rest in the

primed comoving reference system, defined as a system in

which the energy flux vector S′ = 0. It follows that VB is the

relativistically valid energy flow velocity.

But one may question whether the condition S′ = 0 used

in Section 4 truly implies that the comoving observer is mov-
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ing at the same velocity as the underlying energy flow, as re-

quired for VB to be the correct energy flow velocity. For, as

eq.(2) and eq.(16) directly prove, VB , VA = S/E and hence

S , EVB. It may seem that this inequality will block deriva-

tion of the Poynting theorem on which the meanings of S and

E depend.

However, the equality of S and EVB is not a necessary

condition for the Poynting theorem. Derivation of the Poynt-

ing theorem is independent of the relation between S and

the product EVB. The Poynting conservation of energy the-

orem derives from the divergence of the symmetric energy-

momentum tensor T µν defined in eq.(5)

∂µT µν = − f ν where f α =
1

c
Fα

β Jβ (20)

is the Lorentz force density four-vector and Fµν is the elec-

tromagnetic field tensor.14 The ν = 0 component of the above

manifestly covariant equation expands to

∂E

∂t
+∇ · S = −E · J (21)

which is the Poynting work-energy theorem of electromag-

netism. Since it is derived from the manifestly covariant pair

of equations, eq.(20) the Poynting energy conservation for-

mula eq.(21) is well defined and relativistically correct. And

the meanings of E and S as energy density and energy-flux

vector, respectively, are established by eq.(21). No further

proof is required. The Poynting theorem and the meaning of

S as the energy flux vector are thus proved, regardless of the

relation between S and the product EVB.

This proof that the Poynting theorem and the meaning of

the energy flux vector S are independently established cor-

roborates and completes the argument at the end of Section 4,

which depended on the meaning of S. Thus we are driven to

the conclusion that VB is indeed the well defined and relativis-

tically correct velocity of the electromagnetic energy flow,

and that VA is not.

6 An Exceptional Case

Although VA , VB in general, there is an important excep-

tional case, which the theory here must approach as a limit.

A plane, monochromatic, right /left circularly polarized light

wave in vacuum with angular velocity ω and wave vector

k = (ω/c) e3 has

E = E0 {e1 cos φ ± e2 sin φ}

B = E0 {∓e1 sin φ + e2 cos φ} (22)

where φ = (kz − ωt) and z = x3. This electromagnetic field

has E ⊥ B and E = B = E0 , 0, which is the limiting case

treated in item (c) of Appendix V. In this exceptional case,

14See Section 7.3 of Rindler[13].

velocity Definitions A and B coincide. As can be seen from

eq.(2) and eq.(17) VB = c = VA.

As noted in Appendix V, and as also can be read from

eq.(25), in this case E′ would be zero in the comoving sys-

tem. But there is no comoving system with velocity magni-

tude equal to the speed of light. Observers are not permitted

to ride on light waves. However, both definitions do agree

that the flow speed of a light wave is the speed of light.

Setting VA = c and using S = c2G, eq.(1) in this special

case implies that

Gc = E (23)

Since wave solution eq.(22) defines a mode of the electro-

magnetic field whose second-quantization creates photons of

definite vector momentum, eq.(23) can be considered a classi-

cal precursor of the relation pc = e for the photon momentum

and energy, a relation that requires the photon to be a massless

particle.

7 The Energy-Momentum Tensor in a Comoving Frame

The derivation of velocity VB in Section 4 also allows the

electromagnetic energy-momentum tensor in the comoving

system to be derived from first principles. As noted in Sec-

tion 4, the comoving energy-momentum tensor of a perfect

fluid must simply be asserted rather than derived. But the

electromagnetic energy-momentum tensor in a comoving sys-

tem can be derived, and shown equal to a simple, diagonal

form depending only on the energy density and one other pa-

rameter.

In the comoving (primed) coordinate system that was pro-

duced by the Lorentz boost VB, the energy-momentum tensor

eq.(5) is represented by the tensor components T ′αβ in which

the cG′
i
= S ′

i
/c = 0.

(

T ′αβ
)

=





























E′ 0 0 0

0 M′
11

M′
12

M′
13

0 M′
21

M′
22

M′
23

0 M′
31

M′
32

M′
33





























(24)

where15

E′ =
1

2

(

E′2 + B′2
)

= E
1 − (VB/c)2

1 + (VB/c)2
(25)

and M′i j = −
(

E′i E
′
j + B′i B

′
j

)

+ δi jE
′

We can now make another Lorentz transformation, an or-

thogonal spatial rotation at fixed time, to diagonalize the real,

symmetric sub-matrix M′
i j

in eq.(24).

The required spatial rotation can be defined as the product

of two proper rotations. First, rotate the coordinate system

to bring the e′
3

axis into the V′
B
⊜ VB direction.16 Denote

this rotated system by tildes. Rotations do not change three-

vectors, which are invariant objects under rotations. However,

15Eq.(25) is derived in Appendix IV.
16Note that item (c) of footnote 10 implies equal magnitudes V ′

B
= VB.
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rotations do change the components of three-vectors. Thus

ṼB=V′
B

, Ẽ=E′, and B̃=B′, but in the tilde system ṼB now

has components ṼB1 = ṼB2 = 0 and ṼB3 = VB. Then using

footnote 11, we have 0 = (E′ ·V′
B

) = (Ẽ · ṼB) = VBẼ3. Except

in no-flow regions with E nonzero but S zero, the magnitude

VB , 0 and thus Ẽ3 = 0. A similar argument proves that B̃3 =

0. Thus the (33) component of the energy-momentum tensor

when expressed in the tilde system is T̃ 33 = −
(

Ẽ2
3
+ B̃2

3

)

+

Ẽ = Ẽ. The tensor from eq.(24), when expressed in the tilde

system, becomes

(

T̃αβ
)

=































Ẽ 0 0 0

0 M̃11 M̃12 0

0 M̃21 M̃22 0

0 0 0 Ẽ































(26)

where Ẽ = E′.

Since the invariant trace of the electrodynamic energy-

momentum tensor vanishes,17 it follows from eq.(26) that

0 = ηαβT̃
αβ = −Ẽ + M̃11 + M̃22 + Ẽ (27)

and hence M̃11 = −M̃22. Also, the symmetry of the energy-

momentum tensor makes M̃21 = M̃12. Thus

(

T̃αβ
)

=































Ẽ 0 0 0

0 −ψ̃ ξ̃ 0

0 ξ̃ ψ̃ 0

0 0 0 Ẽ































(28)

where ψ̃ = M̃22 and ξ̃ = M̃12.

A second proper rotation, this time about the ẽ3 axis,

produces the final coordinate system, denoted with double

primes. After this rotation, E′′
3
= Ẽ3 = 0, B′′

3
= B̃3 = 0,

and V′′
B
= ṼB has components V ′′

B1
= V ′′

B2
= 0 and V ′′

B3
= VB.

The only effect of this second rotation is to diagonalize the

2x2 matrix

(

−ψ̃ ξ̃

ξ̃ ψ̃

)

. The energy-momentum tensor then

has its final diagonal form in the double-prime system

T ′′
αβ
=





























E′′ 0 0 0

0 −a′′ 0 0

0 0 a′′ 0

0 0 0 E′′





























(29)

where E′′ = Ẽ = E′. The parameter a′′ has absolute value

|a′′| =
{

ψ̃2 + ξ̃2
}1/2

where ±
{

ψ̃2 + ξ̃2
}1/2

are the two eigenval-

ues of the matrix

(

−ψ̃ ξ̃

ξ̃ ψ̃

)

that were calculated during the

diagonalization process. The sign of a′′ depends on the di-

rections and relative magnitudes of the electric and magnetic

fields.

17See Section 7.8 of Rindler [13]

The rotation that takes the system from the primed to the

double-primed system is then the product of the first and sec-

ond rotations. The various representations of the boost veloc-

ity used above are related by V′′
B
= VBe′′

3
= ṼB = VBẽ3 =

V′
B
⊜ VB. It follows from item (c) of footnote 10 that all of

these vectors have the same original magnitude VB.

The energy-momentum tensor eq.(29) in the double-prime

system is diagonal and in a canonical form, with two elements

equal to E′′ = E′ and two other elements equal to plus or mi-

nus the single parameter a′′.

The reduction of the electromagnetic energy-momentum

tensor to the diagonal form in eq.(29) has important conse-

quences for possible fluid-dynamic models of electromag-

netic energy flow. For example, the perfect fluid model18 has

a comoving energy-momentum tensor given by the diagonal

matrix
(

X′αβ
)

= diag (ε′, π′, π′, π′) where ε′ is an energy den-

sity and the π′ are isotropic pressure terms, all of which are

equal by definition. But, regardless of the value of parame-

ters E′′ and a′′, there is no choice of ε′ and π′ for which the

quadruplet of numbers (ε′, π′, π′, π′) can match the quadruplet

of numbers (E′′,−a′′, a′′,E′′), other than the unphysical case

when all of the numbers in both quadruplets are zero. Simi-

larly, the so-called dust model19 has
(

X′αβ
)

= diag (ε′, 0, 0, 0)

which also cannot match the electromagnetic tensor.

Hence, the energy-momentum tensor of electrodynamics

cannot be successfully modeled with either a perfect-fluid or

a dust model.

8 Conclusion

The title of this paper asks whether electromagnetic field mo-

mentum is due to the flow of field energy. The answer has

required careful examination of the velocity of energy flow.

First, consider velocity Definition A from Section 2. Di-

viding the definition S = EVA, from eq.(1) by c2 and using

G = S/c2 andMrel = E/c
2 gives

G =MrelVA (30)

which exhibits electromagnetic field momentum density G as

due to the flow of relativistic mass-energyMrel. But as shown

in Section 3, VA = S/E is not a relativistically correct velocity

definition, and therefore must be rejected.

Definition B, on the other hand, is derived in Section 4

with complete adherence to the transformation rules of spe-

cial relativity. Definition B is derived from the condition that

the coordinate velocity of the flow of electromagnetic field

energy at a given event is the velocity VB of a Lorentz boost

that transforms the original reference system into a reference

system in which the Poynting energy flux vector is zero at

that event. But Definition B does not permit the explanation

18See Part I, Chapter 2, Section 10, eq.(2.10.1) et seq of Weinberg [20].
19Discussed in Section 12.2 of d’Inverno [4] and on page 301 et seq. of

Rindler [13].
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of field momentum density as due to moving relativistic mass-

energy. Introducing VB = λVA from eq.(11) into eq.(30) and

using eq.(19) gives

G =
Mrel

λ
(λVA) =

Mrel

λ
VB =

2MrelVB

1 + (VB/c)2
(31)

Flow of relativistic massMrel at velocity VB would pro-

duce a momentum density MrelVB = λG that has the same

direction as G but has a magnitude that is too small by the

factor λ ≤ 1 defined in eqs.(15, 19).

Note that this failure of the flow of relativistic massMrel

to explain the field momentum density G in the electromag-

netic fields must not be confused with the so-called hidden

momentum in the sources that is sometimes invoked to bal-

ance the field momentum and preserve momentum conserva-

tion globally.20

The present paper is concerned only with a correct un-

derstanding of the electromagnetic field contribution itself,

locally at every point of the electromagnetic field including

those points with no source density. Encouraged by the argu-

ments from the Feynman example noted in footnote 1 above,

we accept that the vector G = S/c2 correctly reproduces the

local field momentum density at every point of the electro-

magnetic field. The question is the source of that local point-

by-point field momentum density.

The conclusion of this paper can be now stated as the fol-

lowing proposition:

Proposition 2: There is no relativistically correct defini-

tion of energy flow velocity that explains the electromagnetic

field momentum density as due to the flow of field energy.

Proof: If an energy flow velocity v obeys G =Mrelv, then

multiplying by c2 implies S = Ev which in turn implies that

v = S/E = VA. But, according to Proposition 1 in Section 3,

VA is not a relativistically correct velocity for electromagnetic

energy flow. This v is therefore not relativistically correct.

The title question of this paper has a negative answer.

When adherence to the strict transformation rules of special

relativity is required, electromagnetic field momentum cannot

be explained as due to the flow of field energy.

9 Afterword

Detailed studies of the energy and momentum carried by the

electromagnetic field, such as the present paper, can be seen

as searches for clues to a possible new physics underlying the

Maxwell Equations. But, if we accept the conclusion at the

end of Section 8, the attempt to model the Maxwell Equations

at the level of energy flow and the energy-momentum tensor

seems a failed program.

This failure calls into question the whole project of find-

ing a deeper level behind the Maxwell Equations. A consen-

sus exists that the electric and magnetic fields are not states

20See Example 12.12 of Griffiths [8], and also McDonald [12] and Babson

et al [1].

of anything else,21 but are either abstract mathematical aids,

or themselves elements of reality to be taken as fundamental.

In this view, the Maxwell Equations are already at the funda-

mental level, and attempts to derive them from some deeper

reality are a futile revival of nineteenth century aether theories

and, as Feynman says, "... produce nothing but errors."

But Maxwell himself looked for fluid models of his equa-

tions. Maxwell [11] explains the inverse square electric force

law as a consequence of the spread of an incompressible fluid.

And he later proposes (Maxwell [10]) a model of Faraday’s

magnetic field lines based on fluid vortices.22

Perhaps, instead of taking the conclusion in Section 8 as a

reason to abandon Maxwell’s search, we should rather read a

lesson from it: Our attempt at a flow model may have failed

because the attempt is taking place at the wrong level. The

electromagnetic energy-momentum tensor Tαβ is quadratic in

the fundamental electromagnetic fields E and B. It may be

that any successful flow model of electrodynamics must op-

erate at the linear, field level and not at the energy-momentum

level.

For example, consider two monochromatic plane waves

propagating in the +e3 direction, wave a with right circular

polarization and wave b with left circular polarization.

Ea = E0 {e1 cos φ + e2 sin φ}

Eb = E0 {e1 cosφ − e2 sinφ} (32)

where φ = (kz − ωt)and z = x3, and the magnetic fields are

the cross product of e3 with the given electric fields. The

electromagnetic energy-momentum tensors T
αβ
a and T

αβ

b
of

these two waves are the same, with

(

T
αβ
a

)

=
(

T
αβ

b

)

=





























E2
0

0 0 E2
0

0 0 0 0

0 0 0 0

E2
0

0 0 E2
0





























(33)

We now want to superpose these two situations a and b.

The superposition of the two circularly polarized waves is a

linearly polarized wave

Ea+b = Ea + Eb = 2E0e1 cos φ (34)

and the resulting energy-momentum tensor is

(

T
αβ

a+b

)

=





























4E2
0

cos2 φ 0 0 4E2
0

cos2 φ

0 0 0 0

0 0 0 0

4E2
0

cos2 φ 0 0 4E2
0

cos2 φ





























(35)

which is time varying at each fixed spatial point, passing

through zero every π/ω seconds.

21See, for example, Section 4-5 of Feynman [6].
22Falconer [5] surveys other early vortex models.
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This example illustrates that representing the electromag-

netic energy-momentum flow as the flow of a fluid at the

quadratic energy-momentum level ignores the fact that elec-

tromagnetism is a linear theory with superposition. It is dif-

ficult to see how combining the two tensors in eq.(33) could

result in the time-varying tensor of eq.(35). Electromagnetic

fields do not superpose at the energy-momentum level. There-

fore an attempt to model electromagnetism at that level is

bound to fail. Such a model should be applied at the linear,

field level of the E and B fields themselves.

But, in spite of the appeal and long history of Maxwell’s

quest, there are formidable hurdles facing any model at the

field level, even using modern mathematical techniques. One

such hurdle is that a complete model of the E and B fields

would probably also need to include interaction with, and

characterization of, the source fields ρ and J. And it should

include not only the effects of sources on fields but also the

effects of fields on sources, the Lorentz force law.

Appendix I: Lorentz Boosts

Consider a Lorentz transformation from an "unprimed" coor-

dinate system with coordinates x = (x0, x1, x2, x3) to a "primed"

coordinate system with coordinates x′ = (x′0, x′1, x′2, x′3) where

x0 = ct and x′0 = ct′. The most general proper, homogeneous

Lorentz transformation from the unprimed to the primed sys-

tems can be written as a Lorentz boost times a rotation.23

I.1: Definition of Lorentz Boost

A Lorentz boost transformation is parameterized by a boost

velocity vector V with components (V1,V2,V3) and magni-

tude V =
(

V2
1
+ V2

2
+ V2

3

)1/2
. Using the Einstein summation

convention, it is written as x′α = Λα
β

xβ where Λ0
0
= γ, Λ0

i
=

Λi
0
= −γVi/c, and Λi

j
= δi j + (γ − 1)ViV j/V

2. The δi j is the

Kroeneker delta function, and γ =
(

1 − V2/c2
)−1/2

.

The inverse boost Λαβ is the same except for the substitu-

tion Vi → −Vi. Thus the inverse boost vector is (−V′) where

V′ ⊜ V. (See footnote 10 for definition of the ⊜ symbol.)

I.2: Meaning of the Boost Velocity V

The velocity V that parameterizes the Lorentz boost is also

the coordinate velocity, as measured from the unprimed sys-

tem, of any point that is at rest in the primed system. In this

sense, the entire primed system is moving with velocity V as

observed from the unprimed system. Any observer at rest in

the primed system is moving with that velocity V relative to

the unprimed system.

To see this, apply the inverse Lorentz boost to the dif-

ferentials of a point at rest in the primed system, dx′i = 0

for i = 1, 2, 3, but dx′0 > 0. The result is dx0 = γdx′0 and

dxi = γ (Vi/c) dx′0. Thus dxi/dt = Vi, as was asserted.

23See Part I, Chapter 2, Section 1 of Weinberg [20].

Appendix II: Proof that Boost with VqA Makes J′ = 0

As applied to a four-vector J = J0e0 + J, with J0 = cρ and

Ji = (J)i the Lorentz boost transformation rule is J′α=Λα
β

Jβ.

Hence

J′i = Λi
0J0 + Λi

jJ
j

= −γ
Vi

c
J0 + Ji + (γ − 1)

Vi

(

V jJ
j
)

V2
(36)

Replacing boost velocity ratio Vi/c by
(

VqA

)

i
/c = Ji/J0 in

eq.(36) makes J′i = 0, as asserted.

Appendix III: Proof that VqA is Consistent with the Ein-

stein Velocity Addition Formula

Consider two reference frames, one denoted as unprimed and

the other with asterisks. Let the orientation of the frames be

as in the Einstein Addition Test in Section 3.

The four-vector charge flux in the asterisk system is then

J = J∗0e∗
0
+ J∗1e∗

1
where J∗0 = cρ∗ and J∗1 = (J∗)1. From the

standard inverse boost formula Jα = Λαβ J∗β, the transform

between the two frames is (suppressing the 2 and 3 compo-

nents for simplicity)

(

J0

J1

)

= γ

(

1 (V/c)

(V/c) 1

) (

J∗0

J∗1

)

(37)

The velocities VqA and V∗
qA

in the two frames are therefore

related by

VqA

c
=

J1

J0
=

(V/c) J∗0 + J∗1

J∗0 + (V/c) J∗1

=
(V/c) +

(

J∗1/J∗0
)

1 + (V/c)
(

J∗1/J∗0
) =

(V/c) +
(

V∗
qA
/c

)

1 +
(

V V∗
qA
/c2

) (38)

which replicates the standard Einstein velocity addition for-

mula, as asserted. Comparison of eq.(38) and eq.(4) shows

that VqA passes the Einstein Addition Test.

Appendix IV: Detailed Derivations of Eq.(13) and Eq.(25).

To derive eq.(13), we have eq.(2), eq.(11), eq.(12), and (V · E) =

(V · B) = 0. Using eq.(12),

S′ = c
(

E′ × B′
)

⊜ cγ2
B {(E × B) + f + g}

where, omitting zero terms,

f = −E ×

(

VB

c
× E

)

+

(

VB

c
× B

)

× B

= −
(

E2 + B2
) VB

c
= −λ

(

E2 + B2
) VA

c

= −λ
(

E2 + B2
) 2 (E × B)
(

E2 + B2
) = −2λ (E × B)

10



and, again omitting zero terms,

g = −

(

VB

c
× B

)

×

(

VB

c
× E

)

= −
VB

c

{(

VB

c
× B

)

· E

}

=
VB

c

{

VB

c
· (E × B)

}

= λ2

{

2 (E × B)
(

E2 + B2
)

} {

VA

c
·

(

E2 + B2

2

)

VA

c

}

= λ2

(

VA

c
·

VA

c

)

(E × B) = λ2
(

VA

c

)2

(E × B)

Collect terms and factor out (E × B) to get

S′ = c
(

E′ × B′
)

⊜ γ2
Bc (E × B)

{

(

VA

c

)2

λ2 − 2λ + 1

}

which is eq.(13).

To derive eq.(25) we have eq.(2), eq.(12), and (V · E) =

(V · B) = 0. Using eq.(12), and property (b) of footnote 10,

E′2 = γ2
B

(

E +
VB

c
× B

)

·

(

E +
VB

c
× B

)

= γ2
B

{

E2 + 2E ·

(

VB

c
× B

)

+

(

VB

c
× B

)

·

(

VB

c
× B

)}

Omitting zero terms,

2E ·

(

VB

c
× B

)

= −2
VB

c
· (E × B) and

(

VB

c
× B

)

·

(

VB

c
× B

)

=

(

VB

c

)

·

{

B ×

(

VB

c
× B

)}

=

(

VB

c

)2

B2

Thus

E′2 = γ2
B

{

E2 − 2
VB

c
· (E × B) +

(

VB

c

)2

B2

}

Similarly,

B′2 = γ2
B

{

B2 − 2
VB

c
· (E × B) +

(

VB

c

)2

E2

}

Combining, and using (E × B) =
{

2E/
[

1 + (VB/c)2
]} VB

c
from

eqs.(2, 11, and 19), where E =
(

E2 + B2
)

/2, gives

E′ =
1

2

(

E′2 + B′2
)

= γ2
B

{

[

1 + (VB/c)2
] E2 + B2

2
− 2

VB

c
· (E × B)

}

=
γ2

B
E

1 + (VB/c)2

{

[

1 + (VB/c)2
]2
− 4 (VB/c)2

}

=
γ2

B
E

1 + (VB/c)2

[

1 − (VB/c)2
]2
= E

1 − (VB/c)2

1 + (VB/c)2

which is eq.(25).

Appendix V: Detail of the Comoving System

The comoving system is defined by S′ = c (E′ × B′) = 0.

Thus |E′ × B′| = E′B′ sin θ′ = 0 where θ′ is the angle between

E′ and B′ in the comoving system.

From eqs.(7.62 and 7.63) of Rindler [13], (E′2 − B′2) =

(E2 − B2) and (E′ · B′) = (E · B). It follows that:

(a) An event with (E · B) , 0 has E′B′ , 0 and therefore

E′ and B′ must be either parallel or anti-parallel, θ′ = 0 or

θ′ = π at this event;

(b) An event with 0 = (E · B) = (E′ · B′) = E′B′ cos θ′

cannot have E′B′ , 0 in the comoving system because that

would require both cos θ′ = 0 and sin θ′ = 0. Thus E′B′ = 0

and one of E′ and B′ must be zero. If E > B then E′ > B′ and

hence B′ = 0. If E < B then E′ < B′ and hence E′ = 0;

(c) If both 0 = (E · B) and E = B , 0 at an event, then

both E′B′ = 0 and E′ = B′, and therefore E′ = B′ = 0 and

the fields and energy density E′ in the comoving system are

zero. But eq.(2) and eq.(17) show that such an event also has

(VA/c) = 1 and hence (VB/c) = 1 which is an unphysical

value for a Lorentz boost velocity. The case E = B , 0 and

0 = E · B therefore must be approached as a limit.
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