Green's Reciprocity Theorem

Oliver Davis Johns
San Francisco State University, Physics and Astronomy Department
1600 Holloway Avenue, San Francisco, CA 94133, USA
Email: ojohns@metacosmos.org
Web: http://www.metacosmos.org

1 Derivation for Point Charges

Define a space-filling grid of point charges q_{i}. Points with no charge are represented as point charges with q_{i} equal to zero. Assume the nonzero ones are all at finite distance from the origin. Then the potential at point i is

$$
\begin{equation*}
v_{i}=\frac{1}{4 \pi} \sum_{j=1}^{N} \frac{q_{j}}{r_{i j}} \tag{1}
\end{equation*}
$$

where $r_{i j}$ is the distance between points i and j.
Now define another collection of point charges on the same grid but with different values, denoted by using capital letters

$$
\begin{equation*}
V_{i}=\frac{1}{4 \pi} \sum_{j=1}^{N} \frac{Q_{j}}{r_{i j}} \tag{2}
\end{equation*}
$$

Form the two double sums

$$
\begin{equation*}
\sum_{i=1}^{N} q_{i} V_{i}=\frac{1}{4 \pi} \sum_{i, j=1}^{N} \frac{q_{i} Q_{j}}{r_{i j}} \quad \text { and } \quad \sum_{i=1}^{N} Q_{i} v_{i}=\frac{1}{4 \pi} \sum_{i, j=1}^{N} \frac{Q_{i} q_{j}}{r_{i j}} \tag{3}
\end{equation*}
$$

Since $r_{i j}=r_{j i}$, and the sum is symmetric, it follows that

$$
\begin{equation*}
\sum_{i=1}^{N} q_{i} V_{i}=\sum_{i=1}^{N} Q_{i} v_{i} \tag{4}
\end{equation*}
$$

This is the Greeen reciprocity theorem. ${ }^{1}$

2 Derivation for Continuous Distributions

With $d q=\rho_{1}(\mathbf{r}) d \tau$ replacing q_{i} and $d Q=\rho_{2}(\mathbf{r}) d \tau$ replacing Q_{i}, eq.(4) is equivalent to the continuous charge distribution expression

$$
\begin{equation*}
\int \rho_{1}(\mathbf{r}) V_{2}(\mathbf{r}) d \tau=\int \rho_{2}(\mathbf{r}) V_{1}(\mathbf{r}) d \tau \tag{5}
\end{equation*}
$$

where V_{1} corresponds to the v_{i} in eq.(1) and V_{2} to the V_{i} in eq.(2). That is, the subscript 1 in eq.(5) corresponds to the lower-case letters in Section 1 and the subscript 2 in eq.(5) corresponds to the upper-case letters in Section 1. The index i is replaced by the spatial location vector \mathbf{r}, and it is still assumed that the charge densities are nonzero only for finite distance from the origin. ${ }^{2}$

3 Experiments Using Two Conductors

Consider two initially uncharged conductors A and B of any shape and any distance apart (except not touching, of course).

First do an experiment corresponding to the charge distribution and potential denoted by subscript 1 in eq.(5). In this first experiment, charge $q \neq 0$ is added to B, but A is left uncharged (i.e., the integral of ρ_{1} over equipotential surface A would produce a net charge of zero, but the integral of ρ_{1} over the equipotential surface B would produce a net charge q.)

Second, without moving the conductors A and B or changing their orientations, do a different experiment corresponding to the charge distribution and potential denoted by subscript 2 in eq.(5). Again begin with both conductors uncharged. In this second experiment, charge $q \neq 0$ is added

[^0]to A, but B is left uncharged (i.e., the integral of ρ_{2} over equipotential surface A would produce a net charge of q, but the integral of ρ_{2} over the equipotential surface B would produce a net charge zero.)

The integral on the left side of eq.(5) then yields

$$
\begin{equation*}
\int \rho_{1}(\mathbf{r}) V_{2}(\mathbf{r}) d \tau=0 V_{A 2}+q V_{B 2}=q V_{B 2} \tag{6}
\end{equation*}
$$

and the integral on the right side of eq.(5) yields

$$
\begin{equation*}
\int \rho_{2}(\mathbf{r}) V_{1}(\mathbf{r}) d \tau=q V_{A 1}+0 V_{B 1}=q V_{A 1} \tag{7}
\end{equation*}
$$

From the Green reciprocity theorem eq.(5), the two integrals in eqn. $(6,7)$ are equal. Since q is assumed to be the same in the two experiments, the result is

$$
\begin{equation*}
V_{A 1}=V_{B 2} \tag{8}
\end{equation*}
$$

The potential on uncharged conductor A when charge q is added to conductor B (as in experiment 1) is the same as the potential on uncharged condutor B when charge q is added to conductor A (as in experiment 2).

References

[1] D. J. Griffiths. Introduction to Electrodynamics. Pearson Education Ltd., 4th edition, 2013.
[2] J. D. Jackson. Classical Electrodynamics. John Wiley and Sons, New York, 2nd edition, 1975.
[3] W. K. Panofsky and M. Phillips. Classical Electricity and Magnetism. Addison-Wesley Pub. Co., 1955.

[^0]: ${ }^{1}$ See Section 3-2 of Panofsky and Phillips [3]
 ${ }^{2}$ See Problem 3.50 of Griffiths [1] and Problem 1.12 of Jackson [2].

