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Abstract

This paper is a critical study of non-standard Maxwellian electrodynamics. It explores two im-

portant topics: the inclusion of both magnetic and electric charge to produce what it calls Extended

Electrodynamics, and the existence of a symmetry called Dyality Invariance that exchanges electric

and magnetic quantities.

First, the paper summarizes Extended Electrodynamics, including potentials, gauge transforma-

tions, and a new proof of the extended electrodynamic Poynting theorem.

A formal Lagrangian derivation of the extended Maxwell equations is also given, but its value in

fundamental studies is questioned.

The paper then defines Dyality Invariance (form invariance under the so-called Dyality Transfor-

mation that exchanges electric and magnetic quantities) and shows it to be a valid symmetry if and only

if electrodynamics is given the extended form.

The paper suggests that the complete Maxwellian electrodynamics is extended electrodynamics

with its dyality invariance. But dyality can be interpreted either actively or passively. Since magnetic

charge has not been observed experimentally, the active interpretation is ruled out. But a passive

interpretation can be used to avoid writing magnetic source and potential terms explicitly.

The paper also refutes the idea that dyality invariance would permit a magnetic charge to be trans-

formed away even if one existed. If nonzero magnetic charge exists, then experimental evidence for its

existence cannot be hidden by a dyality transformation.
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1 Preface

This paper explores two important topics: the inclusion of both magnetic and electric charge to produce

what is called Extended Electrodynamics, and the existence of a symmetry called Dyality Invariance that

exchanges electric and magnetic quantities.1

Sections 2 through 5 summarize Extended Electrodynamics, including potentials and gauge trans-

formations. A new proof of the extended electrodynamic Poynting theorem is given in Section 3 and

Appendix A in Section 11.

Section 6 gives a formal Lagrangian derivation of extended electrodynamics, but suggests that La-

grangian methods are of limited value.

In Section 7, Dyality Invariance (form invariance under an exchange of electric and magnetic quantities

called a Dyality Transformation) is defined and shown to be a symmetry only of extended electrodynamics.

Standard electrodynamics with only electric charge is not invariant under dyality transformations.

Sections 7 and 8 demonstrate the dyality invariance of extended electrodynamics, including the ex-

tended Maxwell equations themselves, the energy-momentum tensor, and expressions involving the four-

vector potentials.

Section 9 introduces the distinction between active and passive interpretations of dyality transforma-

tions. Active interpretation of dyality invariance would imply the experimental existence of magnetic

charge, and is therefore currently ruled out. However, since magnetic charge has not yet been found

experimentally, a passive interpretation of dyality invariance allows us to consider the standard electro-

dynamics to be extended electrodynamics with the magnetic sources and potentials transformed passively

out of all equations.

Section 9 also offers a refutation of the idea that dyality invariance would permit an experimentally ex-

isting magnetic charge to be transformed away. If nonzero magnetic charge exists, experimental evidence

for its existence cannot be hidden by any dyality transformation.

An afterword in Section 10 suggests directions for future research. The paper has two Appendices.

2 Notation and Definitions

This section introduces some definitions to be used in the paper.

1The neologism "dyality" is suggested by [6] to prevent confusion with "duality", the relation, for example, in eq.(2.10).
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An event xµ is denoted by

x0
= ct xµ = (x0, x1, x2, x3)

∂µ =

(

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

�
2
= ∂µ∂

µ (2.1)

We denote four-vectors as K = K0
e0 + K where e0 is the time unit vector and the three-vector part is

understood to be K = K1
e1 + K2

e2 + K3
e3. In the Einstein summation convention, Greek indices range

from 0 to 3, Roman indices from 1 to 3. The Minkowski metric tensor used to raise or lower indices is

ηµν = η
µν
= diag(−1,+1,+1,+1). Three-vectors are written with bold type K, and their magnitudes as K.

The paper uses Heaviside-Lorentz electromagnetic units, and considers only electrodynamics in a vacuum

except for explicit source charge densities.

The completely antisymmetric, Minkowski-space, Levi-Civita tensor εαβµν obeys the identities

ε0123
= +1 ε0123 = −1 (2.2)

εαβµνεαβγδ = −2
(

δµγδ
ν
δ − δ

µ

δ
δνγ

)

(2.3)

εαβµνεαθγδ = −
(

δ
β

θ
δµγδ
ν
δ + δ

β
γδ
µ

δ
δνθ + δ

β

δ
δ
µ

θ
δνγ

)

+

(

δ
β

θ
δ
µ

δ
δνγ + δ

β

δ
δµγδ
ν
θ + δ

β
γδ
µ

θ
δνδ

)

(2.4)

where δα
β
= ηαµηβµ is the Kroeneker-delta tensor, which is +1 when α = β and zero otherwise.

If Xαβ is an antisymmetric second rank tensor, then its dual X̃αβ is another antisymmetric second rank

tensor, defined as

X̃αβ =
1

2
εαβµνXµν (2.5)

It follows from eq.(2.3) that

˜̃Xαβ =
1

2
εαβµνX̃µν =

1

4
εαβµνεµνθδX

θδ
= −

1

2

(

δαθ δ
β

δ
− δαδδ

β

θ

)

Xθδ = −Xαβ (2.6)

Other useful identities follow from eqs.( 2.4 and 2.5). If Xαβ and Yαβ are antisymmetric tensors, then

X̃αµỸαν = YαµXαν −
1

2
δµνX

αβYαβ (2.7)

X̃αβỸαβ = −XαβYαβ (2.8)

The Maxwell field four-tensor Fαβ in terms of the electric field E and the magnetic field B is

Fµν =



































0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0



































µν

(2.9)
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The equations of electrodynamics can often be put in more concise and symmetric form by also defining

a dual field tensor Gαβ as

Gαβ = F̃αβ =
1

2
εαβµνFµν (2.10)

The inverse relation can be found from eq.(2.6)

Fαβ = − ˜̃Fαβ = −G̃αβ = −
1

2
εαβµνGµν (2.11)

In terms of the electric field E and the magnetic field B, the dual field tensor is

Gαβ =



































0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0



































αβ

(2.12)

The standard Maxwell equations without magnetic charge then have the manifestly covariant form2

∂αF
αβ
= −

1

c
Jβ and ∂αG

αβ
= 0 (2.13)

where Jα is the electric charge density four-vector with electric charge density ρ and flux density J. The

three-vector form of the standard Maxwell equations is

∇ · E = ρ ∇ × B = +
1

c

∂E

∂t
+

1

c
J (2.14)

∇ · B = 0 −∇ × E =
1

c

∂B

∂t
(2.15)

Inserting eq.(2.10) into the second of eq.(2.13) gives

εβαµν∂αFµν = 0 (2.16)

for all β values. This equation is equivalent to

∂αFµν + ∂µFνα + ∂νFαµ = 0 (2.17)

which is often quoted3 as the covariant form of the so-called homogeneous Maxwell equations, eq.(2.15).

However, the second of eq.(2.13) itself seems the preferable form since it shows clearly the absence of a

magnetic charge density parallel to the electric charge density Jβ.

2See eq.(12.126) of [5].
3See eq.(11.143) of [7].
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3 Extended Electrodynamics with Electric and Magnetic Charge

In this section we present a synopsis of an Extended Electrodynamics with both electric and magnetic

charges, and prove an extended electrodynamic version of the Poynting theorem.

Assuming that magnetic charge, if any, must be added to the Maxwell equations in a way that preserves

Lorentz covariance, a conservative and plausible generalization of standard electrodynamics is simply to

add a magnetic charge density four-vector as source of the dual field tensor in eq.(2.13).

The covariant Maxwell equations are then:

∂αF
αβ
= −

1

c
Jβ ∂αG

αβ
= −

1

c
Lβ (3.1)

where

J = cρe0 + J L = cλe0 + L (3.2)

are, respectively, the electric charge density four-vector J with electric charge density ρ and flux density J

and the magnetic charge four-vector L with magnetic charge density λ and flux density L.

In three-vector form, the extended Maxwell equations in eq.(3.1) are4

∇ · E = ρ ∇ × B =
1

c

∂E

∂t
+

1

c
J (3.3)

∇ · B = λ −∇ × E =
1

c

∂B

∂t
+

1

c
L (3.4)

It follows from eq.(3.1) that, due to the anti-symmetry of Fαβ and Gαβ,

∂βJ
β
= −c∂α∂βF

αβ
= 0 ∂βL

β
= −c∂α∂βG

αβ
= 0 (3.5)

In three-vector form these are the conservation rules for electric and magnetic charge

∂ρ

∂t
+∇ · J = 0

∂λ

∂t
+∇ · L = 0 (3.6)

Another plausible generalization defines the extended Lorentz force density four-vector f α by adding

a comparable magnetic term f αmg to the standard electric term f α
el

so that

f α =
(

f αel + f αmg

)

where f αel =
1

c
FαγJ

γ f αmg =
1

c
GαγL

γ (3.7)

4Eqs.(3.3, 3.4) agree with eq.(6.150) of [7].
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In three-vector form,

f 0
el =

1

c
(E · J) f 0

mg =
1

c
(B · L) (3.8)

fel =

{

ρE +
1

c
(J × B)

}

fmg =

{

λB −
1

c
(L × E)

}

(3.9)

We can also use eq.(3.1) to write the force density entirely in terms of field tensors

f αel =
1

c
FαγJ

γ
= −Fαγ

(

∂µF
µγ
)

(3.10)

f αmg =
1

c
GαγL

γ
= −Gαγ

(

∂µG
µγ
)

(3.11)

Standard electrodynamics defines5 the symmetric energy momentum tensor as

Tαβ = FαµFβν ηµν −
1

4
ηαβFµνF

µν (3.12)

This same definition also proves correct for extended electrodynamics.

Expansion of eq.(3.12) using matrix multiplication yields

Tαβ = T βα =



































E c Px c Py c Pz

c Px M11 M12 M13

c Py M21 M22 M23

c Pz M31 M32 M33



































αβ

(3.13)

where,

E =
1

2

(

E2
+ B2

)

cP = E × B Mi j = −
(

EiE j + BiB j

)

+ δi jE (3.14)

The second term on the right in eq.(3.12) has the effect of making Tαβ traceless. With the invariant trace

defined as

Tr T = Tαβηαβ (3.15)

it follows from eq.(3.12) that

Tr T = ηαβηµνF
αµFβν − FµνF

µν
= 0 (3.16)

Using the identity eq.(2.7) with the substitutions Xαβ = Yαβ = Fαβ, the standard definition in eq.(3.12)

can also be written in an equivalent form

Tαβ = GαµGβν ηµν −
1

4
ηαβGµνG

µν (3.17)

5For example, see eq.(12.113) of [7].
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Since the same substitutions show that GµνG
µν
= −FµνF

µν, eqs.(3.12 and 3.17) can be added to give a third

equivalent form

Tαβ =
1

2

{

FαµFβν ηµν +GαµGβν ηµν
}

(3.18)

Of these three equivalent forms, the third, eq.(3.18), is the simplest and most useful. It should be quoted

in the textbooks rather than eq.(3.12).

As will be seen in Section 7, eq.(3.18) makes evident the invariance of Tαβ under the dyality transfor-

mation. The otherwise accidental requirement that Tαβ must be made traceless before it will reproduce the

Poynting theorem can be understood as the requirement that electrodynamics must be invariant under the

dyality transformation, and hence must be extended electrodynamics.

Using the equivalent definition of Tαβ from eq.(3.18), together with eqs.(3.10, 3.11), Appendix A in

Section 11 proves that

∂αT
αβ
= −

(

f
β

el
+ f

β
mg

)

= − f β (3.19)

which demonstrates both the correctness of the choice of Tαβ in the equivalent eqs.(3.12, 3.17, and 3.18),

and also the correctness of the force hypothesis in eq.(3.7).

For β = 0, eq.(3.19) expands to the Poynting theorem
(

∂E

∂t
+∇ · S

)

= − (E · J) − (B · L) (3.20)

where S = cE × B.

For β = i, where i = 1, 2, 3, eq.(3.19) expands to

∂Pi

∂t
+ (∇ ·M)i = −

{

ρE +
1

c
(J × B)

}

i

−

{

λB −
1

c
(L × E)

}

i

(3.21)

where P and M are defined in eq.(3.14). Note that the sign of the three-dimensional dyadic M is defined

here so that, with da the outward pointing elements of surface S, the integral
∮

S

(

∑3
j=1 Mi jda j

)

is the net

outgoing flow of the ith component of momentum.

4 Extended Maxwell Equations Derived from Two Vector Potentials

The extended Maxwell equations can be derived from two four-vector potentials, A and N. With the

definition6

Fαβ =

(

∂Aβ

∂xα
−
∂Aα

∂xβ

)

− εαβµν
(

∂Nν

∂xµ
−
∂Nµ

∂xν

)

(4.1)

6Eqs.(4.1, 4.3, 5.5, 5.7) were first obtained by Shanmugadhasan[14]. See also [2]. For sign convention, compare eq.(11.136)

of [7].
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it follows that the dual field tensor is

Gαβ =
1

2
εαβµνFµν =

1

2
εαβµν

(

∂µAν − ∂νAµ
)

−
1

2
εαβµνεµνγδ∂

γNδ (4.2)

Using the identity eq.(2.3), this is

Gαβ =

(

∂Nβ

∂xα
−
∂Nα

∂xβ

)

+ εαβµν
(

∂Aν

∂xµ
−
∂Aµ

∂xν

)

(4.3)

With the definitions of the antisymmetric and gauge invariant tensors aαβ and nαβ,

aαβ =
∂Aα

∂xβ
−
∂Aβ

∂xα

nαβ =
∂Nα

∂xβ
−
∂Nβ

∂xα
(4.4)

and the definition of duals in eq.(2.5), the eqs.(4.1 and 4.3) may also be written as

Fαβ = −aαβ + ñαβ (4.5)

Gαβ = −nαβ − ãαβ

The potential four-vectors may be written with the notations A0
= φ and N0

= θ

A = φe0 + A N = θe0 + N (4.6)

Then the electric and magnetic fields can be written in terms of these potentials.

− Ei = F i0
= ∂iA0 − ∂0Ai − εi0kl∂kNl (4.7)

and thus

E = −∇φ −
1

c

∂A

∂t
−∇ × N (4.8)

Also

− Bi = Gi0
= ∂iN0 − ∂0N i

+ εi0kl∂kAl (4.9)

and thus

B = −∇θ −
1

c

∂N

∂t
+∇ × A (4.10)
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5 Gauge Transformation of Potentials

A gauge transformation replaces the four-vector potentials Aα and Nα introduced in Section 4 by the mod-

ified potentials

A∗α = Aα + ∂αΛ and N∗α = Nα + ∂αΓ (5.1)

where Λ and Γ are field functions. Then

F∗αβ =
(

∂αA∗β − ∂βA∗α
)

− εαβµν∂µN
∗
ν = Fαβ +

(

∂α∂β − ∂β∂α
)

Λ −
1

2
εαβµν

(

∂µ∂ν − ∂ν∂µ
)

Γ = Fαβ (5.2)

and similarly G∗αβ = Gαβ. The field tensors Fαβand Gαβ, and thus the electric and magnetic fields E and

B, are unchanged by gauge transformation of the potentials.

We assume the Lorenz conditions ∂αA
α
= 0 and ∂αN

α
= 0 for the four-vector potentials. The gauge-

transformed potentials A∗α and N∗α are also four-vectors satisfying the Lorenz conditions ∂αA
∗α
= 0 and

∂αN
∗α
= 0 if and only if the field functions Λ and Γ are Lorentz scalar fields satisfying

�
2
Λ = 0 and �

2
Γ = 0 (5.3)

which we also assume here.

Then the first of eq.(3.1) can be written as

−
1

c
Jβ = ∂αF

αβ
= ∂α∂

αAβ − ∂β (∂αA
α) − εαβγδ∂α∂γNδ (5.4)

The last term vanishes due to antisymmetry and hence, assuming the Lorenz gauge condition, ∂αA
α
= 0,

�
2Aβ = −

1

c
Jβ (5.5)

Similarly, assuming the Lorenz gauge condition ∂αN
α
= 0 and the second of eq.(3.1),

−
1

c
Lβ = ∂αG

αβ
= ∂α∂

αNβ − ∂β (∂αN
α) − εαβγδ∂α∂γAδ (5.6)

�
2Nβ = −

1

c
Lβ (5.7)
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6 Formal Lagrangian Derivation of

Extended Electrodynamics

This section shows that the Maxwell equations of extended electrodynamics can be derived from a La-

grangian field function.

Some approaches to a Lagrangian derivation of extended electrodynamics have been merely the start-

ing point of an attempt to derive the Dirac monopole by merging Lagrangian electrodynamics with Dirac

spinor sources.7

These earlier attempts at a Lagrangian for extended electrodynamics are constricted by their attempt to

write the Lagrangian somehow as a sum of separate "electric" and "magnetic" LagrangiansL = Lel+Lmg.

Others8 introduce "electric" fields Fαβ that act only on electric charges and "magnetic" fields F′αβ that act

only on magnetic charges.

The simplification here is, first, that the Lagrangian field L need not be separated into a symmetric

sum of electric and magnetic Lagrangians.

The second simplification is that only one kind of electromagnetic field Fαβ is needed. It can be

expressed also in the form of a dual tensor Gαβ = F̃αβ, but the E and B fields used in the two tensors are

the same, just re-arranged. One must avoid conflating dyality and duality.

Although a formal Lagrangian derivation of the extended Maxwell equations proves possible, we must

remember that application of Lagrangian methods to electromagnetism has a strong element of enlightened

guesswork. We are loosely guided by analogy, and the precise choices d/dt → ∂/∂xµ, uk → Aα, vk →

Φαµ = ∂Aα/∂x
µ suggested by mechanics must be justified by their success in practice.

The simplified Lagrangian chosen here is9

L = −
1

4
FαβFαβ −

1

c
JαAα +

1

c
LαNα (6.1)

The role of "coordinates" is played by the potentials Aα and Nα, and the role of "generalized velocities" by

Φαβ and Θαβ where

Φαβ =
∂Aα

∂xβ
and Θαβ =

∂Nα

∂xβ
(6.2)

To express L in terms of these "coordinates" and "generalized velocities", write eq.(4.1) and eq.(4.3) as

Fαβ = −
(

Φαβ −Φβα
)

+ ε
µν

αβ
Θµν Gαβ = −

(

Θαβ − Θβα
)

− ε
µν

αβ
Φµν (6.3)

7For example, [14, 3, 2].
8See [13].
9See [11]. Since eq.(2.8) with X=Y=F implies that GαβGαβ = −FαβFαβ, this Lagrangian can also be written in the more

symmetric form L = −
{

1
8
FαβFαβ +

1
c
JαAα

}

+

{

1
8
GαβGαβ +

1
c
LαNα

}

.
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In taking partial derivatives, the Lagrangian field is considered as a function of the form

L = L (A,N,Φ,Θ, x) where A ≡ [Aα], N ≡ [Nα], Φ ≡
[

∂Aα/∂xµ
]

, Θ ≡
[

∂Nα/∂xµ
]

, and x ≡ [xµ], and

where the [ ] brackets denote the entire set of enclosed components. It follows that

∂

∂Φαβ

{

FλδFλδ
}

= −2

{

∂

∂Φαβ
(Φλδ − Φδλ)

}

Fλδ = −4Fαβ (6.4)

and
∂

∂Θαβ

{

FλδFλδ
}

= 2

{

∂

∂Θαβ

(

ε
µν

λδ
Θµν

)

}

Fλδ = 2ελδαβFλδ = 4Gαβ (6.5)

Hence
∂L (A,N,Φ,Θ, x)

∂Φαβ
= Fαβ

∂L (A,N,Φ,Θ, x)

∂Θαβ
= −Gαβ (6.6)

The Lagrange equations, again chosen by analogy with mechanics, are

∂β

(

∂L

∂Φαβ

)

−
∂L

∂Aα
= 0 ∂β

(

∂L

∂Θαβ

)

−
∂L

∂Nα
= 0 (6.7)

Using eqs.( 6.1 and 6.6), the Lagrange equations in eq.(6.7) expand to

∂βF
αβ −

1

c
Jα = 0 − ∂βG

αβ
+

1

c
Lα = 0 (6.8)

Taking account of the anti-symmetry of Fαβ and Gαβ, eq.(6.8) reproduces the covariant extended Maxwell

equations in eq.(3.1).10

Note however that the Lagrangian analogy is limited. For example, the analogs of the generalized

momenta defined in mechanics as pk = ∂L/∂q̇k, are the fields Fαβ and −Gαβ in eq.(6.6). But these are

not independent; they are just the Maxwell field tensor and its dual. There is no covariant, extended

electrodynamic analog of the Hamilton equations.

Attempts to derive the energy-momentum tensor Tαβ from the Lagrangian are also unpersuasive. In

Section 4.9 of [12], a symmetrizing correction term is added to a standard Lagrangian derivation of the

energy-momentum tensor beginning from Noether’s theorem. This method does give the correct Tαβ for

standard electrodynamics. The same method is quoted in [7] and [4]. However, the generalization of

this method does not produce the correct Tαβ for extended electrodynamics, even after a symmetrizing

correction is added.

10The Lagrangian functionL in eq.(6.1) is neither invariant under gauge transformation nor invariant under dyalitic transfor-

mations. This is admissible because, in both cases, the resulting Lagrange equations eq.(6.8) are invariant.

11



Also, a Lagrangian derivation of Tαβ in §94 of [10], using Hamilton’s principle together with variation

of a general-relativistic metric, gives the correct value, but is formalistic and unpersuasive.

The most reliable verification of the energy-momentum tensor Tαβ quoted in eq.(3.18) is the direct,

algebraic proof of the Poynting theorem in Section 3 and Appendix A in Section 11.

7 The Dyality Transformation

This section defines the Dyality Transformation and shows Dyality Invariance under this transformation

to be a symmetry only of extended electrodynamics.

For any solution to the source-free, standard Maxwell equations (eqs.(2.14, 2.15) with ρ = 0 and J = 0)

there is an alternate solution with primed fields defined as

E′ = B B′ = −E (7.1)

With these definitions, eqs.(2.14, 2.15) give

−∇ · B′ = 0 ∇ × E′ = −
1

c

∂B′

∂t
(7.2)

∇ · E′ = 0 ∇ × B′ =
1

c

∂E′

∂t
(7.3)

which shows that the primed fields satisfy exactly the same Maxwell equations as eqs.(2.14, 2.15), but

with primes on all fields.

However, that symmetry is broken when ρ , 0 or J , 0. Then, for example, −∇ · B′ = ρ which

is not a correct Maxwell equation. The transformation in eq.(7.1) is not a valid symmetry of standard

electrodynamics when sources are present.

Symmetry can be regained by moving to the extended electrodynamics of Section 3, and including both

fields and sources in the dyality transformation. Inclusion of A and N also guarantees dyality invariance

of expressions involving these potentials. The Dyality Transformation is then defined as

(

E′

B′

)

=

(

B

−E

) (

J
′

L
′

)

=

(

L

−J

) (

A
′

N
′

)

=

(

N

−A

)

(7.4)

When these definitions are substituted into eq.(3.3) and eq.(3.4), the primed quantities then satisfy the

same three-vector Maxwell equations as in Section 3

−∇ · B′ = −λ′ ∇ × E′ = −
1

c

∂B′

∂t
−

1

c
L′ (7.5)
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∇ · E′ = ρ′ ∇ × B′ =
1

c

∂E′

∂t
+

1

c
J′ (7.6)

This is the dyality transformed solution of the Maxwell equations in which electric and magnetic quantities

are exchanged.

This Dyality Invariance is a symmetry only of Extended Electrodynamics, with both electric and mag-

netic charges. As shown above, there is no such symmetry for standard electrodynamics except in the

special source-free case.

Denote by F′αβ and G′αβ the same matrices as in eq.(2.9) and eq.(2.12), but written with primes on the

electric and magnetic field components. Thus

F′αβ =



































0 E′x E′y E′z
−E′x 0 B′z −B′y
−E′y −B′z 0 B′x
−E′z B′y −B′x 0



































αβ

(7.7)

with a similar expression for G′αβ

G′αβ =



































0 B′x B′y B′z
−B′x 0 −E′z E′y
−B′y E′z 0 −E′x
−B′z −E′y E′x 0



































αβ

(7.8)

Then substitution of the definitions in eq.(7.4) into eq.(7.7) and eq.(7.8) gives the dyality transformation

of Fαβ and Gαβ as
(

F′αβ

G′αβ

)

=

(

Gαβ

−Fαβ

)

(7.9)

Substitute these into eq.(3.1) to obtain

− ∂µG
′µν
=

1

c
L′ν and ∂µF

′µν
= −

1

c
J′ν (7.10)

in which the two equations in eq.(3.1) are merely interchanged. The primed quantities thus satisfy the

same covariant Maxwell equations as those listed above in eq.(3.1). This is the covariant form of the

alternate solution in eqs.(7.2 and 7.3).

We now consider the effect of the dyality transformation on the energy-momentum tensor Tαβ as

written in one of its equivalent forms in eq.(3.18). Let T ′αβ denote the same matrix as the Tαβ in eq.(3.18)

but written with primes on the field components

T ′αβ =
1

2

{

F′αµF′βν ηµν +G′αµG′βν ηµν
}

(7.11)

13



Substitution of eq.(7.9) into eq.(7.11) gives

T ′αβ =
1

2

{

F′αµF′βν ηµν +G′αµG′βν ηµν
}

=
1

2

{

GαµGβν ηµν + (−Fαµ)
(

−Fβν
)

ηµν
}

= Tαβ (7.12)

The dyality transformation eq.(7.9) simply exchanges the two terms in eq.(3.18). Then Tαβ is invariant

under the dyality transformation, in the sense that the dyality substitution produces

T ′αβ = Tαβ (7.13)

This invariance of Tαβ can also be verified by inspection of eq.(3.13). Note that the dyality substitution

makes

E′i E
′
j + B′i B

′
j = BiB j + (−Ei)

(

−E j

)

= EiE j + BiB j (7.14)

and hence E′ = E and M′i j = Mi j. Also notice that E′ × B′ = B × (−E) = E × B and hence P′i = Pi. Thus

T ′αβ = Tαβ.

The dyality transformation must not be confused with the Lorentz transformation that sums over in-

dices. The equation T ′αβ = Tαβ holds independently for every matrix element of Tαβ. Thus eq.(7.13)

implies that T ′00
= T 00, T ′0i

= T 0i, and so forth for the other indices.

8 The Dyality Structure of Extended Electrodynamics

One feature of the covariant form of the extended electrodynamics in Section 3 is the split of the equations

into those governed by the field tensor Fαβ with the electric charge density four-vector J on the one hand,

and those governed by the dual field tensor Gαβ with the magnetic charge density four-vector L on the

other.

We see this division in the Maxwell equations in eq.(3.1) where

∂αF
αβ
= −

1

c
Jβ and ∂αG

αβ
= −

1

c
Lβ (8.1)

and in the Lorentz force densities in eq.(3.7) where f α = ( f α
el
+ f αmg) with

f αel =
1

c
FαγJ

γ and f αmg =
1

c
GαγL

γ (8.2)

This split also appears in the equations for the vector potentials A and N in eq.(5.5) and eq.(5.7) where

�
2Aβ = −

1

c
Jβ and �

2Nβ = −
1

c
Lβ (8.3)
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The four-vector potential A has only electric sources J, and the four-vector potential N has only magnetic

sources L.

In each of the split cases, eqs.(8.1, 8.2, 8.3), the dyality transformation exchanges the two parts of the

split, thus demonstrating the dyality invariance of the theory.

The energy momentum tensor Tαβ in eq.(3.18) is a single expression written as a sum of quadratic

terms in Fαβ and Gαβ

Tαβ =
1

2

{

FαµFβν ηµν +GαµGβν ηµν
}

(8.4)

The dyality transformation exchanges these terms, thus producing the dyality invariance of Tαβ seen in

eq.(7.13).

The dyality transformation also exchanges the expressions in eq.(4.1) and eq.(4.3) for the Maxwell

field Fαβ and its dual Gαβ in terms of the vector potentials; the eq.(4.1)

Fαβ =
(

∂αAβ − ∂βAα
)

− εαβµν∂µNν (8.5)

becomes eq.(4.3)

Gαβ =
(

∂αNβ − ∂βNα
)

+ εαβµν∂µAν (8.6)

and vice-versa.

9 Does Dyality Invariance Imply a Magnetic Monopole?

Let us tentatively accept the hypothesis that a dyality invariant extended electrodynamics is the correct

form of electrodynamics. We consider the implications of that hypothesis. In particular, what does it say

about the reality or non-reality of magnetic charge?

The answer depends on the interpretation of the dyality transformation: active or passive.

What is called an active interpretation of the dyality transformation would imply the experimental

existence of magnetic charge, and hence is currently ruled out.

The analogy here is with active rotations in standard three-dimensional vector algebra.11 In active rota-

tions, a three-vector V is transformed into a rotated vector V′ whose components in the original coordinate

system are given by V ′
i
=

∑

Ri jV j. The rotated vector V′ has the same length but a different direction and

hence is physically different.

11See Chapter 8 of [8]
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Applying that analogy to eq.(7.4), in an active transformation the primed fields represent a different

physical reality. Due to dyality invariance, they are still solutions to the Maxwell equations and the other

equations of extended electrodynamics, but they are alternate solutions, not the same one.

For example, a plane, monochromatic, linearly polarized light wave in vacuum, with angular velocity

ω and wave vector k = (ω/c) e3 has

E = ae1 cos φ B = ae2 cosφ (9.1)

where φ = (kz − ωt) and z = x3. Apply eq.(7.4) to obtain

E′ = ae2 cos φ B′ = −ae1 cosφ (9.2)

which is a plane wave linearly polarized in the e2 direction. The primed plane wave in eq.(9.2) is also a

solution to Maxwell equations, but it is an alternate solution, physically distinguishable from the original

solution in eq.(9.1).

For a more complex example, suppose that we begin with the extended Maxwell equations, but with

L = 0 since no magnetic charge has been found experimentally

∇ · E = ρ ∇ × B =
1

c

∂E

∂t
+

1

c
J (9.3)

∇ · B = 0 −∇ × E =
1

c

∂B

∂t
(9.4)

Now apply the dyality transformation in eq.(7.4). The extended Maxwell equations then become

−∇ · B′ = −λ′ ∇ × E′ = −
1

c

∂B′

∂t
−

1

c
L′ (9.5)

∇ · E′ = 0 ∇ × B′ =
1

c

∂E′

∂t
(9.6)

in which L
′
, 0. Even if we were to begin with a solution with L = 0, corresponding to the current

experimental evidence that no magnetic charge exists, an active transformation such as eq.(7.4) would

imply the real existence of an alternate solution in which L
′
, 0. With the active interpretation of the

dyality transformation, eqs.(9.5, 9.6) represent an experimentally real alternate solution in which magnetic

charge is non-zero. Thus the active interpretation is ruled out currently by the failure to find those solutions

experimentally.

However, a passive interpretation of dyalitic transformations can be used. In the passive interpretation,

the primed quantities in eq.(7.4) are interpreted as representing the same physical reality as the unprimed

ones, just viewed differently.
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The analogy here is with passive rotations in standard three-dimensional vector algebra. The co-

ordinate system is rotated in the opposite sense, and the vector components transform as before, by

V ′i =
∑

Ri jV j. But the vector V itself is unchanged. Vector V has different components only because

it is being viewed now from a different observer orientation.

For example, the passive interpretation holds eq.(9.1) and eq.(9.2) to represent the same physical real-

ity. The only change is that quantities previously denoted E, B are now being denoted by −B′, E′. In the

other example, with the passive interpretation of this dyality transformation, eqs.(9.5, 9.6) represent the

same physical reality as eqs.(9.3, 9.4). The only change is that quantities previously denoted E, B, J are

now being denoted by −B′, E′, −L
′.

The passive interpretation is evidently used by Jackson12 when he says that, if all13 particles have the

same ratio of magnetic to electric charge, then we are free to use the generalized definition of dyalitic

transformation in Appendix B and choose χ in eq.(12.1) such that L
′
= 0. Call that ratio r = qm/qe, and

use the second of eq.(12.1) to write

L
′
= J (− sinχ + r cosχ) (9.7)

and then choose tanχ = r to make L
′
= 0. Then we "... have the Maxwell equations as they are usually

known." In that case, "...it is a matter of convention to speak of a particle possessing an electric charge,

but not magnetic charge."

And, at present there is indeed a universally accepted value for the ratio r of magnetic to electric charge

of all particles. It is r = 0. Thus, viewing the situation using Jackson’s language, we are free to begin with

L = 0 and use r = 0 and χ = 0 (the identity transformation) to maintain L
′
= 0 uniformly and consistently.

Just as we choose our coordinate system for convenience in standard vector calculus, we are free to choose

χ = 0 for our convenience. The result is still extended electrodynamics, but with its passive dyality

symmetry used to justify maintaining L
′ equal to zero. Thus the standard form of Maxwell equations in

eqs.(9.3, 9.4) can be considered as extended Maxwell equations with passive dyality symmetry used to

maintain χ = 0 and L = 0 universally.

However, if a particle with a magnetic charge ratio |qm/qe| greater than the near-zero value of the

electron is eventually found, then there will no longer be a universal value of r. It will have a near-zero

value for the electron, and a presumably larger value for the magnetically charged particle. Then passive

dyality invariance can no longer be used to keep L
′
= 0 universally.

Thus, if some future magnetic-charge-detection experiment can be described correctly by the extended

Maxwell equations with zero magnetic charge for the electron but nonzero magnetic charge for some other

12Section 6.12, p.252 of [7].
13Note the word all; universality is required. Clearly, such a scheme will only be coherent if it is universal. All of physics

would have to agree on the chosen χ value.
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particle, then there will no longer be a passive dyality transformation that transforms away the magnetic

charge sources. If nonzero magnetic charge exists, experimental evidence for its existence cannot be

hidden by a passive dyality transformation.

10 Afterword

It follows from eq.(3.20) that the Poynting vector S = cE × B is the flux density of the field energy

E = 1
2

(

E2
+ B2

)

. If one were to suppose that electromagnetic energy flows as a classical fluid, then there

would be a velocity V(x) defined at each field point such that14

S = EV (10.1)

If that were the case, then dividing by c2 and using the definition of field momentum P from eq.(3.14)

would give

P =MV (10.2)

whereM = E/c2 is a relativistic mass density. We could then conclude that field momentum is due to the

flow of field mass.

However, it has been proved15 that there is no special relativistically correct velocity V satisfying

eq.(10.1). This is because the conservation of electromagnetic energy-momentum is expressed as the

divergence of a symmetric four-tensor Tαβ rather than as the divergence of a (non-existent) four-vector.

Thus eq.(10.2) is not true; electromagnetic field momentum cannot be explained as due to the flow of

relativistic mass. And yet electromagnetic field momentum is freely exchangeable with particle momen-

tum. If electromagnetic field momentum is not due to the flow of field energy, then what is it? And what

is the particle momentum with which it can be freely exchanged?

Attempts to answer those questions may provide clues to a future quantum mechanics.16 If so, we

should concentrate on a deeper understanding of electrodynamics, as this paper attempts to encourage.

Also, the deficiencies of the formal Lagrangian derivation of extended electrodynamics noted in Sec-

tion 6 suggest that future fundamental electrodynamic research should concentrate on the extended Maxwell

equations themselves and not on their Lagrangian derivation.

14See Chapter 2 of [1].
15See [9].
16For example, the non-existence of V(x) in eq.(10.2) may relate to the non-existence of velocity eigenstates in quantum

mechanics.
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11 Appendix A:The Poynting Theorem

To prove that ∂αT
αβ
= − f β = −

(

f
β

el
+ f

β
mg

)

.

From eq.(3.18), this is to prove that

−
(

f
β

el
+ f

β
mg

)

= ∂αT
αβ
=

1

2
∂α

{

FαµFβν ηµν +GαµGβν ηµν
}

(11.1)

which, using eq.(3.10) and eq.(3.11) and the product rule, is equivalent to

{

Fβγ (∂αF
αγ) +Gβγ (∂αG

αγ)
}

=
1

2

{

Fβγ (∂αF
αγ) + Fαγ

(

∂αF
βγ
)

+Gβγ (∂αG
αγ) +Gαγ

(

∂αG
βγ
) }

(11.2)

Thus, we must prove that

Fβγ (∂αF
αγ) +Gβγ (∂αG

αγ) = Fαγ

(

∂αF
βγ
)

+Gαγ

(

∂αG
βγ
)

(11.3)

Defining

φβ ≡ Gβγ (∂αG
αγ) −Gαγ

(

∂αGβγ
)

(11.4)

we must prove that

φβ = −Fβγ (∂αF
αγ) + Fαγ

(

∂αFβγ
)

(11.5)

Inserting eq.(2.10) into eq.(11.4) gives

φβ =
1

4
εγβθδF

θδ
(

∂αε
γαµνFµν

)

−
1

4
εγαµνFµν

(

∂αεγβθδF
θδ
)

Using the identity eq.(2.4), this may be written

φβ =
1

4

{

−
(

δαβδ
µ

θ
δνδ + δ

α
θ δ
µ

δ
δνβ + δ

α
δδ
µ

β
δνθ

)

+

(

δαβδ
µ

δ
δνθ + δ

α
δδ
µ

θ
δνβ + δ

α
θ δ
µ

β
δνδ

) } {

Fθδ∂αFµν − Fµν∂αF
θδ
}

(11.6)

φβ = −
1

2

(

δαβδ
µ

θ
δνδ + δ

α
θ δ
µ

δ
δνβ + δ

α
δδ
µ

β
δνθ

) (

Fθδ∂αFµν − Fµν∂αF
θδ
)

(11.7)

φβ = −
1

2

(

Fµν∂βFµν + Fαµ∂αFµβ + Fνα∂αFβν
)

+
1

2

(

Fµν∂βF
µν
+ Fµβ∂αF

αµ
+ Fβν∂αF

να
)

(11.8)

φβ = −Fβγ (∂αF
αγ) + Fαγ

(

∂αFβγ
)

(11.9)

which is eq.(11.5), as was to be proved.
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12 Appendix B: Generalized Dyality Transformation

The definition of dyality transformation in eq.(7.4) can be generalized to

(

E′

B′

)

=

(

cos χ sinχ

− sinχ cosχ

) (

E

B

)

(

J
′

L
′

)

=

(

cos χ sinχ

− sinχ cosχ

) (

J

L

)

(12.1)

(

A
′

N
′

)

=

(

cos χ sinχ

− sinχ cosχ

) (

A

N

)

where χ is a constant parameter.17 The earlier definition in eq.(7.4) is the special case with χ = π/2. Due

to the linearity and orthogonality of eq.(12.1), all dyality invariance arguments given earlier in the paper

using χ = π/2 are also valid for general χ. For example, eq.(7.9) generalizes to

(

F′αβ

G′αβ

)

=

(

cosχ sinχ

− sinχ cos χ

) (

Fαβ

Gαβ

)

(12.2)

Also T ′αβ = Tαβ and the Poynting theorem in eq.(3.19) is preserved, regardless of the χ value.

17See eqs.(6.151 and 6.152) of [7].
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